Clinical Activity of Adenosine A2A Receptor (A2aR) Inhibitor CPI-444 is Associated with Tumor Expression of Adenosine Pathway Genes and Tumor Immune Modulation Drew Hotson¹, John Powderly², Leisha Emens³, Patrick Forde³, Matthew Hellmann⁴, Lawrence Fong⁵, Ben Markman⁶, Brett Hughes⁷, Jonathan Goldman⁸, Mario Sznol⁹, Daruka Mahadevan¹⁰, Shivaani Kummar¹¹, Joshua Brody¹², Philip Bonomi¹³, <u>Jason Luke¹⁴</u>, Matthew Riese¹⁵, Taofeek Owonikoko¹⁶, Sherene Loi¹⁷, Amy Wiese¹⁸, Robert Doebele¹⁹, James Lee²⁰, Chunyan Gu¹, Stephen Willingham¹, Ginna Laport¹, Richard Miller¹ and Ian McCaffery¹ ¹Corvus Pharmaceuticals, Burlingame, CA; ²Carolina BioOncology Institute, Huntersville, NC; ³Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD; ⁴Memorial Sloan Kettering Cancer Center, New York City, NY; ⁵University of California, San Francisco, San Francisco, CA; ⁶Monash Medical Centre, Clayton, Australia; ⁷Royal Brisbane and Women's Hospital, Herston, Australia; ⁸University of California, Los Angeles, Los Angeles, CA; ⁹Yale University School of Medicine, New Haven, CT; ¹⁰University of Arizona Cancer Center, Tucson, AZ; ¹¹Stanford University School of Medicine, Stanford, CA; ¹²Icahn School of Medicine at Mount Sinai, New York City, NY; ¹³Rush University Medical Center, Chicago, IL; ¹⁴University of Chicago Medical Center, Chicago, IL; ¹⁵Medical College of Wisconsin, Milwaukee, WI; ¹⁶Emory University Hospital, Atlanta, GA; ¹⁷Peter MacCallum Cancer Centre, Melbourne, Australia; ¹⁸Karmanos Cancer Institute/Wayne State University, Detroit, MI; ¹⁹University of Colorado Anschutz Medical Campus, Aurora, CO; ²⁰University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA. #### Disclosures #### Consultancy 7 Hills, Actym, Amgen, Array, AstraZeneca, BeneVir, Bristol-Myers Squibb, Castle, CheckMate, EMD Serono, Gilead, Janssen, Novartis, Merck #### Clinical Trial Support to Institution AbbVie, Boston Biomedical, Bristol-Myers Squibb, Celldex, Corvus, Delcath, Five Prime, Genentech, Immunocore, Incyte, Intensity, MedImmune, Macrogenics, Novartis, Pharmacyclics, Merck, Tesaro Funding for CPI-444 clinical trial provided by Corvus # Background - Anti-PD-(L)1 antibodies are approved for treatment of several cancers but a small proportion of patients benefit - Mechanisms of anti-PD-(L)1 resistance are not well understood and no agents are approved to overcome resistance - Adenosine pathway mediates tumor immunosuppression; may be a resistance mechanism to anti-PD-(L)1 therapy - CPI-444 is an oral, small molecule inhibitor of A2AR that has shown anti-tumor activity in anti-PD-(L)1 resistant/ refractory, and PDL-1 negative patients¹ # Phase 1/1b Clinical Study with Oral Drug CPI-444 - Prior anti-PD-(L)1 allowed - Resistant: SD or better > 3 months of treatment - Refractory: progression within 3 months - Must have progressive disease on prior therapy - No selection for PD-L1 expression ## Prior Anti-PD-(L)1 Treatment Increases A2AR, CD73 and CD39 Adenosine pathway is a potential mechanism of resistance #### Exposure to anti-PD-(L)1 therapy (> 3 months) increases A2AR, CD73, and CD39 expression ## Adenosine Pathway Expression is Higher in RCC and NSCLC Pre-Treatment Biopsies ### Renal Cell Cohorts Expanded Patient characteristics | | Renal Cell Cancer (N=51) | |--|---| | Prior anti-PD-(L)1 exposure Naïve Resistant/Refractory | 16 (31%)
35 (69%) | | PD-L1 Negative (archival) * | 91% | | Median time since IO agent, months (range) | 1.6 (1 – 71) | | Histology | 50 (98%) Clear cell
1 (2%) Papillary | | Median age, years (range) No. of patients: single agent /combination Median number prior therapies (range) | 64 (44-70)
25/26
3 (1-5) | | Adverse Prognostic Factors (%) Visceral metastases Hepatic metastases Anemia Elevated LDH | 88%
20%
45%
21% | ^{*} PD-L1 status determined using FDA-approved assay (SP142, cutoff = 5%) # CPI-444 Anti-Tumor Activity in Renal Cell Cancer Responses with single agent and combination #### **Partial Responses in RCC** # Renal Cell Cancer Response rate and disease control rate in evaluable patients ## Treatment-Related Adverse Events #### Adverse Events (Gr1/2) \geq 5% Frequency (n=210) | | CPI-444 (%) | CPI-444/Atezo
(%) | |--------------------|-------------|----------------------| | Fatigue | 21 | 29 | | Nausea | 12 | 14 | | Pruritus | 11 | 10 | | Pyrexia | 5 | 9 | | Decreased appetite | 6 | 7 | | Diarrhea | 7 | 5 | | Anemia | 6 | 4 | | Vomiting | 3 | 6 | | Rash | 3 | 6 | #### **Grade > 3 Serious Adverse Events** #### **CPI-444** (n=1) • Gr 3 nausea/vomiting/diarrhea #### CPI-444/Atezolizumab (n=5) - Gr 3 immune related hepatitis, dermatitis, mucositis, pneumonitis - Gr 3 autoimmune hemolytic anemia - Gr 3 increased ALT/AST - Gr 3 thrombocytopenia/ Gr 4 encephalitis - Gr 3 pneumonitis Data cutoff 10/26/17 # Screening A2AR and CD73 Associated with Response Double positive A2AR, CD73 may be predictive # Screening A2AR, CD73 Associated with Disease Control Rate Double positive A2AR, CD73 may be predictive #### Disease Control Rate (all indications; biomarker assessable) | | Negative | Positive | |----------------------------------|------------|--------------| | A2AR | 4/39 (10%) | 10/34 (29%) | | CD73 | 2/22 (9%) | 12/51 (24%) | | A2AR + CD73
(Double Positive) | 4/49 (8%) | 10/24 (42%)* | ^{*}p=0.0007 # In CD73+ Tumors, Single Agent CPI-444 Induces Expression of T cell Activation Markers in Post-Dose Biopsies CD73 Expression (in Screening Biopsies) CD73 Expression (in Screening Biopsies) # Summary - Tumor expression of A2AR, CD73 and CD39 are increased in patients that are resistant to prior treatment with anti-PD-(L)1 - RCC and NSCLC have high tumor expression of adenosine pathway genes A2AR, CD73 and CD39 - CPI-444 has anti-tumor activity in RCC - Reponses seen in anti-PD-(L)1 resistant/refractory patients - A2AR and CD73 expression in screening biopsies is associated with response to therapy - CPI-444 increases CD8+ infiltration in tumors and induces expression of IFN γ -dependent genes and Th1 activation - This study continues to enroll patients with RCC and NSCLC in expansion cohorts # Acknowledgements Patients and their Families Clinical Investigators and their staff Colleagues at Corvus