# CD68+ Tumor-Associated Myeloid Cells as the Target of Adenosine-Induced Gene Products and Predictor of Response to Adenosine Blockade with Ciforadenant (Cifo) in Renal Cell Cancer (RCC)

Voss M<sup>1</sup>, Hotson A<sup>2</sup>, Willingham S<sup>2</sup>, Hughes B<sup>3</sup>, Merchan J<sup>4</sup>, Fong L<sup>5</sup>, Chu M<sup>6</sup>, George S<sup>7</sup>, Munneke B<sup>2</sup>, Mobasher M<sup>2</sup>, Miller R<sup>2</sup>

¹Memorial Sloan Kettering Cancer Center, New York NY, ²Corvus Pharmaceuticals, Burlingame CA, ³Royal Brisbane Hospital, Brisbane Hospital, Brisbane Hospital, Brisbane Hospital, Brisbane Hospital, Brisbane Hospital, Burlingame CA, ³Royal Brisbane Hospital, Burlingame CA, ³Royal Brisbane Hospital, Brisbane Hospital, Brisbane Hospital, Brisbane Hospital, Burlingame CA, ³Royal Brisbane Hospital, Brisbane Hospital

# ADENOSINE INHIBITS ANTI-TUMOR IMMUNITY BY RECRUITMENT OF MYELOID CELLS

- Adenosine in the tumor microenvironment induces expression of gene products derived from myeloid cells which correlate with unfavorable prognosis in RCC
- Fong et al.¹ showed tumors with an adenosine-induced gene signature are responsive to A2A receptor blockade with ciforadenant
- McDermott et al.² showed that an identical myeloid signature was associated with poor prognosis and poor response to anti-PD-L1
- Hakimi et al.³ (abstract# 5082 at ASCO) demonstrated shorter disease-free survival in myeloid/Adenosine Signature (AdenoSig) positive patients
- AdenoSig genes include chemokines that signal through CCR2 and CXCR2 to recruit myeloid and granulocytic cells (e.g. immunosuppressive tumor associated-M2 macrophages), thought to mediate resistance to anti-PD-(L)1
- Ciforadenant is currently under investigation for safety and anti-tumor activity
- We now describe a refinement of the AdenoSig based on adenosine-induced tumor infiltrating CD68+ myeloid cells which further enriches for patients likely to respond to ciforadenant +/- atezolizumab



**Figure 1.** AdenoSig recruits CD68+ macrophages.

A2AR=adenosine-2A receptor; A2BR=adenosine-2B receptor; AMP=adenosine monophosphate; ATP=adenosine triphosphate

1. Fong et al. Cancer Discov. 2020; 2. McDermott et al. Nature Medicine. 2018; 3. Hakimi et al. ASCO 2020, abstract 5082

# PROTOCOL DESIGN SUMMARY

Ciforadenant Monotherapy
(n=22)
100 mg BID 28 days/cycle

Renal Cell Cancer
(n=51)

Ciforadenant + Atezolizumab
(n=29)
100-200 mg BID 28 days/cycle + 840 mg, Q2W

Tumor Biomarker
Assessment

AdenoSig (RNA expression
using NanoString or RNASeq

CD68+ Infiltration (IHC)

Eligibility

 Measurable disease
 Failed up to 5 prior therapies (depending on cohort)
 Progressive disease on prior therapy
 Treatment

 Measurable disease
 Prior anti-PD-(L)1 allowed (mandatory depending on cohort)
 No selection for PD-L1 expression
 Treated until disease progression or toxicity

### PATIENT CHARACTERISTICS



#### TREATMENT EMERGENT ADVERSE EVENTS

**Table 2.** Treatment emergent adverse events with an incidence of ≥10% of any grade in any treatment category

Ciforadenant (n=22)

Ciforadenant + Atezolizumab (n=29)

| Event, number of patients, (%)       |           |          |           |          |
|--------------------------------------|-----------|----------|-----------|----------|
|                                      | Any Grade | Grade 3+ | Any Grade | Grade 3+ |
| Anaemia                              | 4 (18.2)  | 1 (4.5)  | 5 (17.2)  | 3 (10.3) |
| Nausea                               | 6 (27.3)  | 0        | 13 (44.8) | 1 (3.4)  |
| Constipation                         | 3 (13.6)  | 0        | 10 (34.5) | 0        |
| Diarrhoea                            | 3 (13.6)  | 0        | 7 (24.1)  | 0        |
| Vomiting                             | 4 (18.2)  | 0        | 3 (10.3)  | 0        |
| Abdominal pain upper                 | 1 (4.5)   | 0        | 4 (13.8)  | 0        |
| Gastrooesophageal reflux disease     | 3 (13.6)  | 0        | 2 (6.9)   | 0        |
| Abdominal pain                       | 1 (4.5)   | 0        | 3 (10.3)  | 1 (3.4)  |
| Dry mouth                            | 0         | 0        | 3 (10.3)  | 0        |
| Fatigue                              | 7 (31.8)  | 0        | 14 (48.3) | 0        |
| Pyrexia                              | 2 (9.1)   | 0        | 5 (17.2)  | 0        |
| Non-cardiac chest pain               | 2 (9.1)   | 0        | 3 (10.3)  | 0        |
| Oedema peripheral                    | 2 (9.1)   | 1 (4.5)  | 3 (10.3)  | 0        |
| Upper respiratory tract infection    | 3 (13.6)  | 0        | 3 (10.3)  | 0        |
| Blood creatinine increased           | 2 (9.1)   | 0        | 3 (10.3)  | 0        |
| Blood alkaline phosphatase increased | 3 (13.6)  | 0        | 0         | 0        |
| Decreased appetite                   | 6 (27.3)  | 2 (9.1)  | 4 (13.8)  | 0        |
| Arthralgia                           | 3 (13.6)  | 1 (4.5)  | 8 (27.6)  | 1 (3.4)  |
| Back pain                            | 3 (13.6)  | 0        | 7 (24.1)  | 0        |
| Musculoskeletal pain                 | 2 (9.1)   | 0        | 6 (20.7)  | 0        |
| Myalgia                              | 2 (9.1)   | 0        | 4 (13.8)  | 0        |
| Musculoskeletal chest pain           | 2 (9.1)   | 0        | 3 (10.3)  | 0        |
| Neck pain                            | 2 (9.1)   | 0        | 3 (10.3)  | 0        |
| Bone pain                            | 1 (4.5)   | 1 (4.5)  | 3 (10.3)  | 0        |
| Pain in extremity                    | 1 (4.5)   | 0        | 3 (10.3)  | 0        |
| Dizziness                            | 6 (27.3)  | 0        | 2 (6.9)   | 0        |
| Headache                             | 3 (13.6)  | 0        | 5 (17.2)  | 0        |
| Neuropathy peripheral                | 0         | 0        | 3 (10.3)  | 0        |
| Insomnia                             | 4 (18.2)  | 0        | 2 (6.9)   | 0        |
| Acute kidney injury                  | 3 (13.6)  | 2 (9.1)  | 0         | 0        |
| Cough                                | 6 (27.3)  | 0        | 7 (24.1)  | 0        |
| Dyspnoea                             | 2 (9.1)   | 0        | 5 (17.2)  | 0        |
| Dyspnoea exertional                  | 4 (18.2)  | 0        | 3 (10.3)  | 0        |
| Nasal congestion                     | 2 (9.1)   | 0        | 5 (17.2)  | 0        |
| Wheezing                             | 1 (4.5)   | 0        | 4 (13.8)  | 0        |
| Productive cough                     | 1 (4.5)   | 0        | 3 (10.3)  | 0        |
| Pruritus                             | 6 (27.3)  | 0        | 5 (17.2)  | 0        |
| Rash                                 | 2 (9.1)   | 0        | 5 (17.2)  | 0        |

# ANTI-TUMOR ACTIVITY WITH CIFO ± ATEZOLIZUMAB



## PROGRESSION-FREE SURVIVAL



# INFILTRATING CD68+ CELLS FURTHER ENRICHES FOR RESPONDERS



**Figure 4a**. Waterfall plot showing best overall response in sum of longest diameter measurements of target lesions for CD68+ patients. Waterfall plot for CD68– patients is not provided. ORR for CD68– patients is 2.6%.



**Figure 4b.** AdenoSig<sup>Pos</sup> RCC patients have higher levels of CD68+ tumor-associated macrophages (TAM); TAMs are reduced with ciforadenant +/-atezolizumab treatment in these patients. CD68+ cells measured using immunohistochemistry (IHC) and a cut-off of 4% positivity in the tumor area. CD68+ cells are statistically significantly more frequently detected in AdenoSig<sup>Pos</sup> tumor biopsies. Treatment is associated with a reduction of CD68+ cells infiltrating the tumor.

## CONCLUSIONS

- In these heavily pretreated patients with metastatic RCC, >50% of which had received 3 or more prior lines, including >80% prior anti-PD(L)1, ciforadenant +/- atezolizumab is well tolerated and shows efficacy
- AdenoSig identifies a subset of RCC patients with an unfavorable prognosis, but are more responsive to treatment with ciforadenant +/- atezolizumab
- ORR (RECIST v1.1) = 17% in AdenoSig<sup>Pos</sup> plus 2 additional patients with tumor regression vs 0% in AdenoSig<sup>Neg</sup>
- A plateau on the PFS curve (Fig 3) suggests that some patients (approx. 25%) may experience prolonged remission
- CD68+ cell infiltration as a single biomarker in the tumor further enriches for responding patients
- CD68+ myeloid cells are downstream targets of adenosine and are immunosuppressive in tumors
- CD68+ myeloid cells may be enumerated by standard immunohistochemical techniques
- ORR (RECIST v1.1) is 27% in CD68+ tumors
- 4 PRs plus 2 other tumor responders out of 15 patients; 1 responder (AdenoSig<sup>Pos</sup>) out of 38 patients in CD68– - Treatment is associated with a reduction in infiltrating CD68+ cells
- The relationship between CD68 and the AdenoSig supports the role of CD68+ M2 macrophages in adenosine-mediated immunosuppression
- This study confirms the role of the AdenoSig biomarker in RCC and further refines the biomarker to a more simple and practical IHC test based on CD68+ cells

For questions or comments, email ContactCP@corvuspharma.com